Battelle The Business of Innovation

Developing a Better Understanding of the Cost of CO₂ Transport and Storage: Moving Beyond a Fixed Storage Cost Assumption

Joel Sminchak¹, Robert Dahowski², James Dooley³, Casie Davidson², and Neeraj Gupta¹

- 1. Battelle, Columbus, Ohio, USA
- 2. Pacific Northwest National Labs, Richland, Washington, USA
- 3. Joint Global Change Research Institute, College Park, MD, USA

Sixth Annual Conference on Carbon Capture & Sequestration

May 7-10, 2007 • Sheraton Station Square • Pittsburgh, Pennsylvania

Presentation Objectives

- Background
- Cost Analysis Methods
- Assumptions
- Factors affecting Cost
 - Reservoir Permeability
 - Reservoir Depth
 - Reservoir Thickness
 - Pipeline length/distribution network
 - Source size
- Conclusions

Background-

- Considerable effort has gone into improving cost estimates for CO₂ capture / separation technologies and to better parameterize the operational characteristics of advanced energy systems such as IGCC+CCS.
- Comparatively less has been done to improve our understanding of the potential costs of transportation and storage (including MMV) for real world CCS systems and how those costs might vary.
- In the absence of this kind of information, many analyses continue to assume that the cost of CO₂ transport and storage is a small fixed charge that doesn't vary with time or from location to location.

Background

 However, the cost of CO₂ transport and storage may vary with the source/sink location, nature of the storage target, surficial features, and other factors.

The Business of Innovation

Research Goal is to Better Understand what Drives the Cost of CO₂ Transport and Storage

- Analysis is focused on costs associated with CO₂ transport, storage, MMV.
- Capture, separation and compression costs are not considered.
- Analysis includes cost of materials, services, design, operation, and maintenance.
- A "cost of capture"
 would need to be
 added to the costs
 shown here to derive a
 full CCS cost.

Battetle

The Business of Innovation

Methods

- Costs analyzed with Battelle proprietary estimator tool
- Transport
 - Pipeline construction
 - Right-of-way
 - Booster stations
 - Operating and maintenance
- Injection/Sequestration
 - Preliminary Site Screening
 - Candidate Site Evaluation
 - Injection System Design
 - Injection System Construction
 - Injection System O&M

Units	# of units/yr	Item
kW-hr	53358468	Injection site electrical power cost
ea	29	Maintenance materials
ea	3	Maintenance staffing level
hr	6220	Maintenance labor
hr	122720	Operating labor
hr	2080	Supervisory labor
hr	1040	QA support
hr	1040	Health and safety support
ea	52	CO2 stream sampling&analysis
ea	4	Wireline, x-well, misc monitoring
events	4	USDW Monitoring
events	4	Leakage Monitoring
sqmi	1.4	3-D active seismic survey
ea	4	Reporting
	-	Troporting

Methods – Source Streams

Two example source streams analyzed:

#1. 2.5 Million Metric Tons CO₂/Year (~350 MW coal-fired power plant)

#2. 25 Million Metric Tons CO₂/Year (~80,000 bbl/d coal-to-liquids facility)

•These two initial source streams were selected as representative bookends of possible large commercial scale CCS facilities; examination of additional intermediate streams is planned.

Assumptions

- •Transport and Sequestration only analyzed. No CO₂ capture, separation, or compression.
- Assumes 25-year project lifespan for annualized costs.
- Injectivity assumed for different thickness and permeability:
 - •Low permeability- assumes ability to inject 600 metric tons CO2/day per well in every 100 ft of effective reservoir thickness.
 - •Medium permeability- assumes ability to inject 1,500 metric tons CO2/day per well in every 100 ft of effective reservoir thickness.
 - •High permeability- assumes ability to inject 3,000 metric tons CO2/day per well in every 100 ft of effective reservoir thickness

(injectivity based on general feasibility rather than analytical evaluation- 1,500 metric tons CO₂/day ~ 525,000 metric tons/year)

 Injectivities were selected to bound the representative range of values likely to be encountered by CCS project operators within onshore US

Key Cost Assumptions

- Materials, labor etc. costs are circa 2000-2005
 - Since that time many of these costs have increased
 - Future research will include updating these costs
 - However, the general relationships established in the analysis should hold true
- 25-year project lifespan for annualized costs

Capital/Construction Costs

Capital Costs-

 Upfront construction costs, site screening, characterization, design, materials, etc.

Summary- Major Capital Cost Drivers

Pipeline	Injection System
Installation/Construction	Well installation
Right-of-way access	Injection system, MMV system
Booster pumps, testing, monitoring system, etc.	Pipeline distribution, candidate evaluation, site screening, permitting, etc.

Operating Costs

Operating Costs-

- Yearly operation and maintenance.
- Includes power, staffing, replacement parts.
- Generally lower than initial capital.

Summary- Major Operating Cost Drivers

Pipeline	Injection System
Maintenance/Inspections/ Monitoring	Maintenance, workovers, materials
Staffing	Power
Power (booster pumps, transmission)	MMV, permitting

Pipeline Transport-Effect of System Size

- Long pipeline and small volume may be costly.
- Economies of scale in long pipeline and large volume system.
- Other analysis shows that terrain, right-of-way, climate affects costs.

Injection System Construction Cost Examples - Effect of Permeability

 Effects of <u>reservoir permeability</u> on injection system #wells and costs is mainly in the need for more wells, which also leads to larger footprint and field size

*Low = assumes ability to inject 220,000 metric tons CO2/yr in each well at depth of 2000 m

Medium = assumes ability to inject 525,000 metric tons CO2/yr in each well at depth of 2000 m

High = assumes ability to inject 1,000,000 metric tons CO2/yr in each well at depth of 2000 m

Injection System Construction Cost Examples - Effect of Effective Thickness

- Effects of decreasing <u>effective reservoir thickness</u> on injection system size and costs is mainly in the need for more wells, which leads to larger footprint
- Effective thickness and permeability are interrelated and both impact injectivity

a = assumes ability to inject 1,500 metric tons CO2/day in every 100 ft of effective reservoir thickness

Injection System Construction Cost Examples - Effect of Reservoir Depth

- Deeper wells cost substantial higher due to complex design and capital costs
- Initial capital costs are distributed across life of the project, and operating costs are only slightly affected by well depths

Conclusions

- The cost of CO₂ pipeline transport ranged from \$0.12 and \$3.65 per metric ton CO₂.
- The smaller the size of the CO₂ point source the greater the incentive will be to cite it as close as possible to its CO₂ storage reservoir.
- Conversely, a the cost of transport for very large CO₂ point sources is less sensitive to distance and therefore these facilities might have the ability to optimize their location between a CO₂ disposal formation and the markets / load centers they are serving.

Conclusions

- The cost of CO₂ storage (including MMV) ranged between \$0.48 to \$14.00 per metric ton CO₂.
- Costs were lowest when the reservoir was shallow (but at least 800m deep) and had high injectivity (a combination of large effective thickness and high permeability).
- The per ton cost for CO₂ storage for smaller CO₂ point sources appears to be more stable / robust across a fairly large range of potential candidate CO₂ storage formations.
- On the other hand, larger CO₂ point sources will likely place a higher value / invest more effort in locating near high quality CO₂ storage reservoirs.
- The number of injector wells may vary from 2-100.

Conclusions

- Analysis of the significant infrastructure needed to store large volumes of CO₂ suggests significant and highly variable costs for transport and storage that must be taken into account in modeled CCS deployment scenarios.
- Economies of scale come into play with larger projects.
- Some economic analysis may be worthwhile to minimize costs associated with long transport distances or large well fields.
- There may be opportunity to reduce costs by combining pipeline and injection system items (ex. System monitoring).

Path Forward

- Maintain and update cost estimator tool based on developments in CCS.
- Validate costs with ongoing projects.
- Integrate model with better estimates on injectivity and basin specific items.

The End

